Hoppa till innehållet

Barnes G-funktion

Från Wikipedia

Barnes G-funktion är en speciell funktion som definieras som


där γ är Eulers konstant. Funktionen är uppkallad efter Ernest William Barnes.

Funktionalekvationer

[redigera | redigera wikitext]

Barnes G-funktion satisfierar funktionalekvationerna

och

Multiplikationsformel

[redigera | redigera wikitext]

Barnes G-funktion satisfierar multiplikationsformeln

där ges av

För gäller Taylorserien

där är Riemanns zetafunktion.

Speciella värden

[redigera | redigera wikitext]

där G är Catalans konstant och A är Glaisher–Kinkelins konstant.

Asymptotisk expansion

[redigera | redigera wikitext]

Logaritmen för Barnes G-funktion har följande asymptotiska expansion:

Relation till gammafunktionens integral

[redigera | redigera wikitext]

Integralen av gammafunktionens logaritm kan ges med hjälp av Barnes G-funktion:

Formeln kan bevisas genom att först ta logaritmen av gammafunktionens och G-funktionens produktrepresentationer:

och med lite förenkling får man

Slutligen tar man logaritmen av gammafunktionens produktrepresentation och integrerar över  :

Eftersom de två uttrycken är identiska är