Hoppa till innehållet

Shimizus L-funktion

Från Wikipedia

Inom matematiken är Shimizus L-funktion, introducerad av Shimizu (1963), en Dirichletserie associerad till en totalt reell algebraisk talkropp. Michael Francis Atiyah, H. Donnelly, and I. M. Singer (1983) definierade signaturdefekten av randen av en mångfald som etainvarianten, värdet vid s=0 av deras etafunktion, och använde detta till att bevisa att Hirzebruchs signaturdefekt av en spets av en Hilbert-modulär yta kan uttryckas med hjälp av värdena vid s=0 eller 1 av Shimizus L-funktion.

Anta att K är en totalt reell algebraisk talkropp, M dess gitter i kroppen samt V en delgrupp av maximalt rang i gruppen av totalt positiva enheter som bevarar gittret. Då definieras Shimazus L-funktion som

Den här artikeln är helt eller delvis baserad på material från engelskspråkiga Wikipedia, Shimizu L-function, 6 november 2014.

Allmänna källor

[redigera | redigera wikitext]