Ortogonalt komplement
Den här artikeln behöver källhänvisningar för att kunna verifieras. (2020-03) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan. |
Ett ortogonalt komplement är i linjär algebra och funktionalanalys ett underrum i ett inre produktrum som består av alla de element som är ortogonala mot alla elementen i ett givet underrum :
Ändlig dimension
[redigera | redigera wikitext]I ett ändligtdimensionellt inre produktrum av dimension n är det ortogonala komplementet till ett k-dimensionellt underrum ett underrum av dimension . Det ortogonala komplementet av det ortogonala komplementet är det ursprungliga rummet:
För en m × n-matris, så har kolonnrummet, , nollrummet, , och radrummet , , följande egenskaper:
Egenskaper
[redigera | redigera wikitext]Det ortogonala komplementet är alltid en sluten mängd i den metriska topologin, för ändligtdimensionella inre produktrum är detta en enkel följd av att alla underrum är slutna. I oändlighetsdimensionella Hilbertrum finns det underrum som inte är slutna, men deras ortogonala komplement är slutna. Det är ortogonala komplementet till det ortogonala komplenetet av W blir då det slutna höljet av W: