Nablaoperatorn är en differentialoperator , betecknad med symbolen ∇, som används inom vektoranalysen . Symbolen är ett kortare och bekvämare tecken för den vektorlika operatorn (i tre dimensioner med kartesiska koordinater):
(
∂
∂
x
,
∂
∂
y
,
∂
∂
z
)
{\displaystyle \left({\cfrac {\partial }{\partial x}},{\cfrac {\partial }{\partial y}},{\cfrac {\partial }{\partial z}}\right)}
Symbolen introducerades av William Rowan Hamilton . Namnet nabla kommer från ett hebreiskt stränginstrument med liknande form.
Operatorn kan appliceras på skalärfält (φ) eller vektorfält (F = (F x , F y , F z )), för att ge
∇
ϕ
=
(
∂
ϕ
∂
x
,
∂
ϕ
∂
y
,
∂
ϕ
∂
z
)
{\displaystyle \nabla \phi =\left({\frac {\partial \phi }{\partial x}},{\frac {\partial \phi }{\partial y}},{\frac {\partial \phi }{\partial z}}\right)}
∇
⋅
F
=
∂
F
x
∂
x
+
∂
F
y
∂
y
+
∂
F
z
∂
z
{\displaystyle \nabla \cdot \mathbf {F} ={\frac {\partial F_{x}}{\partial x}}+{\frac {\partial F_{y}}{\partial y}}+{\frac {\partial F_{z}}{\partial z}}}
∇
×
F
=
|
e
x
e
y
e
z
∂
∂
x
∂
∂
y
∂
∂
z
F
x
F
y
F
z
|
=
(
∂
F
z
∂
y
−
∂
F
y
∂
z
,
∂
F
x
∂
z
−
∂
F
z
∂
x
,
∂
F
y
∂
x
−
∂
F
x
∂
y
)
{\displaystyle \nabla \times \mathbf {F} =\left\vert {\begin{matrix}e_{x}&e_{y}&e_{z}\\{\frac {\partial }{\partial x}}&{\frac {\partial }{\partial y}}&{\frac {\partial }{\partial z}}\\F_{x}&F_{y}&F_{z}\end{matrix}}\right\vert =\left({\frac {\partial F_{z}}{\partial y}}-{\frac {\partial F_{y}}{\partial z}},{\frac {\partial F_{x}}{\partial z}}-{\frac {\partial F_{z}}{\partial x}},{\frac {\partial F_{y}}{\partial x}}-{\frac {\partial F_{x}}{\partial y}}\right)}
Om man kombinerar gradient och divergens får man Laplaceoperatorn , vilken betecknas med nablaoperatorn i kvadrat, ∇2 alternativt Δ:
Δ
ϕ
=
∇
2
ϕ
=
∇
⋅
∇
ϕ
=
∂
2
ϕ
∂
x
2
+
∂
2
ϕ
∂
y
2
+
∂
2
ϕ
∂
z
2
{\displaystyle \Delta \phi =\nabla ^{2}\phi =\nabla \cdot \nabla \phi ={\frac {\partial ^{2}\phi }{\partial x^{2}}}+{\frac {\partial ^{2}\phi }{\partial y^{2}}}+{\frac {\partial ^{2}\phi }{\partial z^{2}}}}
Samt för vektorfält:
Δ
F
=
∇
2
F
=
∇
(
∇
⋅
F
)
−
∇
×
(
∇
×
F
)
{\displaystyle \Delta \mathbf {F} =\nabla ^{2}\mathbf {F} =\nabla (\nabla \cdot \mathbf {F} )-\nabla \times (\nabla \times \mathbf {F} )}
Genom att tolka nablaoperatorn som en vektor och använda räkneregler för vektorprodukter går det att visa att
∇
×
(
∇
ϕ
)
=
0
{\displaystyle \nabla \times (\nabla \phi )=\mathbf {0} }
∇
×
∇
=
0
{\displaystyle \nabla \times \nabla =\mathbf {0} }
∇
(
f
g
)
=
f
∇
g
+
g
∇
f
∇
(
u
→
⋅
v
→
)
=
u
→
×
(
∇
×
v
→
)
+
v
→
×
(
∇
×
u
→
)
+
(
u
→
⋅
∇
)
v
→
+
(
v
→
⋅
∇
)
u
→
∇
⋅
(
f
v
→
)
=
f
(
∇
⋅
v
→
)
+
v
→
⋅
(
∇
f
)
∇
⋅
(
u
→
×
v
→
)
=
v
→
⋅
(
∇
×
u
→
)
−
u
→
⋅
(
∇
×
v
→
)
∇
×
(
f
v
→
)
=
(
∇
f
)
×
v
→
+
f
(
∇
×
v
→
)
∇
×
(
u
→
×
v
→
)
=
u
→
(
∇
⋅
v
→
)
−
v
→
(
∇
⋅
u
→
)
+
(
v
→
⋅
∇
)
u
→
−
(
u
→
⋅
∇
)
v
→
{\displaystyle {\begin{aligned}\nabla (fg)&=f\nabla g+g\nabla f\\\nabla ({\vec {u}}\cdot {\vec {v}})&={\vec {u}}\times (\nabla \times {\vec {v}})+{\vec {v}}\times (\nabla \times {\vec {u}})+({\vec {u}}\cdot \nabla ){\vec {v}}+({\vec {v}}\cdot \nabla ){\vec {u}}\\\nabla \cdot (f{\vec {v}})&=f(\nabla \cdot {\vec {v}})+{\vec {v}}\cdot (\nabla f)\\\nabla \cdot ({\vec {u}}\times {\vec {v}})&={\vec {v}}\cdot (\nabla \times {\vec {u}})-{\vec {u}}\cdot (\nabla \times {\vec {v}})\\\nabla \times (f{\vec {v}})&=(\nabla f)\times {\vec {v}}+f(\nabla \times {\vec {v}})\\\nabla \times ({\vec {u}}\times {\vec {v}})&={\vec {u}}\,(\nabla \cdot {\vec {v}})-{\vec {v}}\,(\nabla \cdot {\vec {u}})+({\vec {v}}\cdot \nabla )\,{\vec {u}}-({\vec {u}}\cdot \nabla )\,{\vec {v}}\end{aligned}}}