Legendres trekvadraterssats
Utseende
Inom matematiken är Legendres trekvadraterssats en sats som säger att varje naturligt tal som inte är av formen för heltal a och b kan skrivas som summan av tre kvadrater:
Satsen framlades av Adrien-Marie Legendre 1798.[1] Hans bevis var dock ofullständigt, och korrigerades senare av Carl Friedrich Gauss.[2] Satsen leder till ett enkelt bevis av Lagranges fyrakvadraterssats, som säger att varje naturligt tal kan skrivas som summan av fyra kvadrater. Låt n vara ett naturligt tal. Då finns det två fall:[3]
- antingen är n inte av formen och är härmed summan av tre kvadrater och alltså även av fyra kvadrater enligt för några x, y, z;
- eller , där , som är summan av tre kvadrater enligt trekvadraterssatsen, så n är summan av fyra kvadrater.
Se även
[redigera | redigera wikitext]Källor
[redigera | redigera wikitext]- Den här artikeln är helt eller delvis baserad på material från engelskspråkiga Wikipedia, Legendre's three-square theorem, 13 mars 2014.
- ^ Conway. Universal Quadratic Forms and the Fifteen Theorem. [1]
- ^ Dietmann, Rainer; Elsholtz, Christian (2008). ”Sums of two squares and one biquadrate”. Funct. Approx. Comment. Math 38 (2): sid. 233-234.
- ^ France Dacar (2012). ”The three squares theorem & enchanted walks”. Jozef Stefan Institute. Arkiverad från originalet den 14 november 2012. https://web.archive.org/web/20121114215556/http://dis.ijs.si/France//notes/the-three-squares-theorem.pdf. Läst 6 oktober 2013.