Inversa funktionssatsen
Inversa funktionssatsen är en matematisk sats inom differentialkalkyl. Satsen ger tillräckliga villkor för att en funktion ska vara inverterbar i en omgivning till en given punkt och en formel för beräkning av derivatan av den inversa funktionen.
Inversa funktionssatsen
[redigera | redigera wikitext]Envariabelanalys
[redigera | redigera wikitext]Om f är kontinuerligt deriverbar med nollskild derivata i punkten a så är f inverterbar i en omgivning till a. Om kan derivatan av beräknas i punkten b genom:
Flervariabelanalys
[redigera | redigera wikitext]Låt vara en kontinuerligt deriverbar avbildning. Om är en punkt så att Jacobideterminanten är nollskilld i
så finns det omgivningar U och V kring respektive så att avbildningen är bijektiv och inversen är kontinuerligt deriverbar.
Om så kan Jacobimatrisen till kan beräknas med
Bevis
[redigera | redigera wikitext]Det finns många bevis för inversa funktionssatsen. Det enklaste bygger på satsen om största och minsta värde. Ett generellare bevis bygger på Banachs fixpunktssats, som även kan användas till att bevisa en generalisering av satsen som gäller i oändlighetsdimensionella vektorrum.
Exempel
[redigera | redigera wikitext]Betrakta definierad av
Jacobimatrisen blir så att determinaten är
Då är nollskild för alla reella x ger inversa funktionssatsen att varje har en omgivning där funktionen är inverterbar.
Se även
[redigera | redigera wikitext]Referenser
[redigera | redigera wikitext]- Forsling, Göran; Mats Neymark (2004). Matematisk analys i en variabel. Liber. sid. 192. ISBN 91-47-05188-4
- Persson, Arne; Lars-Christer Böiers (2005). Analys i flera variabler. Studentlitteratur. ISBN 91-44-03869-0