Hermitepolynomen, uppkallade efter franske 1800-talsmatematikern Charles Hermite, är en uppsättning ortogonala polynom hemmahörande i Hilbertrummet
. De betecknas Hn(x), där n är gradtalet. Med Rodrigues formel kan man generera det n-te polynomet.
![{\displaystyle H_{n}(x)=(-1)^{n}e^{x^{2}}{\frac {d^{n}}{dx^{n}}}(e^{-x^{2}})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6edb6af3edbc398fe86b81babde62fc06df483f7)
Hermitepolynomen är även lösningen till ett Sturm-Liouville-problem, nämligen
![{\displaystyle y''-2xy'+2ny=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c20e06eb68f7e051a64bd3bf5706de11daa9629f)
De elva första Hermitepolynomen är:
![{\displaystyle H_{0}(x)=1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/04fafa99666c4042ad1c8cd34a590c11204066f2)
![{\displaystyle H_{1}(x)=2x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/55b10fadd301caa4fabe887de3173dbd6c0e7333)
![{\displaystyle H_{2}(x)=4x^{2}-2}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a7f4ed72f33cdb8bdf364c8b018ccc0e2ee378e1)
![{\displaystyle H_{3}(x)=8x^{3}-12x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/05da26a56cb9c879dd1604039463bbeeea403b64)
![{\displaystyle H_{4}(x)=16x^{4}-48x^{2}+12}](https://wikimedia.org/api/rest_v1/media/math/render/svg/36786eba7212e67be2ffe135241b1a1348429fe2)
![{\displaystyle H_{5}(x)=32x^{5}-160x^{3}+120x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0af19bfe4ac0d4c7679ec07e06b901462792fa6b)
![{\displaystyle H_{6}(x)=64x^{6}-480x^{4}+720x^{2}-120}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e89760b0a0bfecd21bd65950f3f023b08e9d4c80)
![{\displaystyle H_{7}(x)=128x^{7}-1344x^{5}+3360x^{3}-1680x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/15fd90f14ca82d83d4efec38cbbc4a0de7bdd6c0)
![{\displaystyle H_{8}(x)=256x^{8}-3584x^{6}+13440x^{4}-13440x^{2}+1680}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b8688824762ff518dcb5cb7523ddd48716a5a475)
![{\displaystyle H_{9}(x)=512x^{9}-9216x^{7}+48384x^{5}-80640x^{3}+30240x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d7bf67a8523ca4915a96584778d710da86a1a26a)
![{\displaystyle H_{10}(x)=1024x^{10}-23040x^{8}+161280x^{6}-403200x^{4}+302400x^{2}-30240}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b67e525da6031c029b74116e2f94edd8f1fd02c6)
![{\displaystyle H_{n+1}(x)=2xH_{n}(x)-H_{n}'(x).\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3e21117c2ab1e3801b777359108f7b52d7c7e303)
![{\displaystyle H_{n}(x)=n!\sum _{m=0}^{\lfloor n/2\rfloor }{\frac {(-1)^{m}}{m!(n-2m)!}}(2x)^{n-2m}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9b4bee7de5911e6c40572bc72de287929bed2e)
![{\displaystyle H_{n}(0)={\begin{cases}0,&{\mbox{om }}n{\mbox{ är udda}}\\(-1)^{n/2}2^{n/2}(n-1)!!,&{\mbox{om }}n{\mbox{ är jämnt}}\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/945c76cdd747b7bf77ca0c0fd469f970809a9ac4)
![{\displaystyle \exp(2xt-t^{2})=\sum _{n=0}^{\infty }H_{n}(x){\frac {t^{n}}{n!}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0284deca2c7b7cfa78549c536b23a76d4618805e)
Multiplikationsteoremet:
![{\displaystyle {\mathit {H}}_{n}(\gamma x)=\sum _{i=0}^{\lfloor n/2\rfloor }\gamma ^{n-2i}(\gamma ^{2}-1)^{i}{n \choose 2i}{\frac {(2i)!}{i!}}{\mathit {H}}_{n-2i}(x)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f08cc1735b0df5599c8d74f7854434d3f64b8a64)
![{\displaystyle H_{n}(x+y)=\sum _{k=0}^{n}{n \choose k}H_{k}(x)(2y)^{(n-k)}=2^{-{\frac {n}{2}}}\cdot \sum _{k=0}^{n}{n \choose k}H_{n-k}\left(x{\sqrt {2}}\right)H_{k}\left(y{\sqrt {2}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8fb3ffde5e1b33ddc4c281b0dc0a4a8a3710cab2)
![{\displaystyle {\mathit {H}}_{n}^{(m)}(x)=2^{m}\cdot {\frac {n!}{(n-m)!}}\cdot {\mathit {H}}_{n-m}(x)=2^{m}\cdot m!\cdot {n \choose m}\cdot {\mathit {H}}_{n-m}(x)\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2b586b8bd259030bd7e7f2f2e04112f4d1a58914)
![{\displaystyle H_{n+1}(x)=2xH_{n}(x)-2nH_{n-1}(x)\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7e5a58d1621dae81e4065fab8bbfa62701aacb8d)
Hermitepolynomen är relaterade till Laguerrepolynomen enligt
![{\displaystyle H_{2n}(x)=(-4)^{n}\,n!\,L_{n}^{(-1/2)}(x^{2})=4^{n}\,n!\sum _{i=0}^{n}(-1)^{n-i}{n-{\frac {1}{2}} \choose n-i}{\frac {x^{2i}}{i!}}\,\!}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dca0b6a97a0ef379fa7cb92060d74f6aba8d9f19)
.
![{\displaystyle H_{2n}(x)=(-1)^{n}\,{\frac {(2n)!}{n!}}\,_{1}F_{1}\left(-n,{\frac {1}{2}};x^{2}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4942fa3cd9eb42ba1836be56147c29688475c408)
![{\displaystyle H_{2n+1}(x)=(-1)^{n}\,{\frac {(2n+1)!}{n!}}\,2x\,_{1}F_{1}\left(-n,{\frac {3}{2}};x^{2}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c207d16b11668f769f271166bca6e4fe3031d007)
där
är en generaliserad hypergeometrisk funktion.