Erdős–Straus förmodan
Utseende
(Omdirigerad från Erdős-Straus förmodan)
Inom talteori är Erdős–Straus förmodan en förmodan som säger att för alla heltal n ≥ 2 kan talet 4/n skrivas som summan av reciprokerna av tre positiva heltal. Paul Erdős och Ernst G. Straus formulerade förmodandet år 1948.
Källor
[redigera | redigera wikitext]- Den här artikeln är helt eller delvis baserad på material från engelskspråkiga Wikipedia, Erdős–Straus conjecture, 27 januari 2014.
- Ahmadi, M. H.; Bleicher, M. N. (1998), ”On the conjectures of Erdős and Straus, and Sierpiński on Egyptian fractions”, International Journal of Mathematical and Statistical Sciences 7 (2): 169–185.
- Bernstein, Leon (1962), ”Zur Lösung der diophantischen Gleichung m/n = 1/x + 1/y + 1/z, insbesondere im Fall m = 4” (på tyska), Journal für die Reine und Angewandte Mathematik 211: 1–10.
- Elsholtz, Christian (2001), ”Sums of k unit fractions”, Transactions of the American Mathematical Society 353 (8): 3209–3227, doi:.
- Elsholtz, Christian; Tao, Terence (2011), Counting the number of solutions to the Erdős–Straus equation on unit fractions, http://terrytao.files.wordpress.com/2011/07/egyptian-count13.pdf.
- Eppstein, David (1995), Small numerators, ”Ten algorithms for Egyptian fractions”, Mathematica in Education and Research 4 (2): 5–15, http://www.ics.uci.edu/~eppstein/numth/egypt/smallnum.html
- Erdős, Paul (1950), ”Az 1/x1 + 1/x2 + ... + 1/xn = a/b egyenlet egész számú megoldásairól (On a Diophantine Equation)” (på ungerska), Mat. Lapok. 1: 192–210, http://www.renyi.hu/~p_erdos/1950-02.pdf.
- Guy, Richard K. (2004), Unsolved Problems in Number Theory (3rd), Springer Verlag, s. D11, ISBN 0-387-20860-7.
- Hagedorn, Thomas R. (2000), ”A proof of a conjecture on Egyptian fractions”, American Mathematical Monthly (Mathematical Association of America) 107 (1): 62–63, doi:.
- Hofmeister, Gerd; Stoll, Peter (1985), ”Note on Egyptian fractions”, Journal für die Reine und Angewandte Mathematik 362: 141–145.
- Jaroma, John H. (2004), ”On expanding 4/n into three Egyptian fractions”, Crux Mathematicorum 30 (1): 36–37, http://cms.math.ca/crux/v30/n1/page36-37.pdf.
- Jollensten, Ralph W. (1976), ”A note on the Egyptian problem”, Proceedings of the Seventh Southeastern Conference on Combinatorics, Graph Theory, and Computing (Louisiana State Univ., Baton Rouge, La., 1976), Congressus Numerantium, "XVII", Winnipeg, Man.: Utilitas Math., s. 351–364.
- Kiss, Ernest (1959), ”Quelques remarques sur une équation diophantienne” (på romanska), Acad. R. P. Romîne Fil. Cluj Stud. Cerc. Mat. 10: 59–62.
- Kotsireas, Ilias (1999), ”The Erdős-Straus conjecture on Egyptian fractions”, Paul Erdős and his mathematics (Budapest, 1999), Budapest: János Bolyai Math. Soc., s. 140–144.
- Li, De Lang (1981), ”Equation 4/n = 1/x + 1/y + 1/z”, Journal of Number Theory 13 (4): 485–494, doi:.
- Mordell, Louis J. (1967), Diophantine Equations, Academic Press, s. 287–290.
- Obláth, Richard (1950), ”Sur l'équation diophantienne 4/n = 1/x1 + 1/x2 + 1/x3” (på franska), Mathesis 59: 308–316.
- Rosati, Luigi Antonio (1954), ”Sull'equazione diofantea 4/n = 1/x1 + 1/x2 + 1/x3” (på italienska), Boll. Un. Mat. Ital. (3) 9: 59–63.
- Sander, J. W. (1994), ”On 4/n = 1/x + 1/y + 1/z and Iwaniec' half-dimensional sieve”, Journal of Number Theory 46 (2): 123–136, doi:.
- Schinzel, André (1956), ”Sur quelques propriétés des nombres 3/n et 4/n, où n est un nombre impair” (på franska), Mathesis 65: 219–222.
- Sierpiński, Wacław (1956), ”Sur les décompositions de nombres rationnels en fractions primaires” (på franska), Mathesis 65: 16–32.
- Suryanarayana, D.; Rao, N. Venkateswara (1965), ”On a paper of André Schinzel”, J. Indian Math. Soc. (N.S.) 29: 165–167.
- Terzi, D. G. (1971), ”On a conjecture by Erdős-Straus”, Nordisk Tidskr. Informationsbehandling (BIT) 11 (2): 212–216, doi:.
- Vaughan, R. C. (1970), ”On a problem of Erdős, Straus and Schinzel”, Mathematika 17 (02): 193–198, doi:
- Webb, William A. (1970), ”On 4/n = 1/x + 1/y + 1/z”, Proceedings of the American Mathematical Society (American Mathematical Society) 25 (3): 578–584, doi:.
- Yamamoto, Koichi (1965), ”On the Diophantine equation 4/n = 1/x + 1/y + 1/z”, Memoirs of the Faculty of Science. Kyushu University. Series A. Mathematics 19: 37–47, doi:.
- Yang, Xun Qian (1982), ”A note on 4/n = 1/x + 1/y + 1/z”, Proceedings of the American Mathematical Society 85 (4): 496–498, doi:.