Hoppa till innehållet

Linjär avbildning

Från Wikipedia
(Omdirigerad från Avbildningsmatris)
Ett exempel på en linjär transformation i två dimensioner.
Ett exempel på en linjär transformation i två dimensioner. Observera hur basvektorerna transformeras med matrisen.

Inom matematiken är en linjär avbildning (även kallad linjär transformation och linjär operation) en särskild sorts avbildning som bevarar identitet och invers mellan två vektorrum.

En linjär avbildning är en avbildning som för vektorer och skalärer uppfyller följande egenskaper

  • homogen:
  • additiv:

Dessa två krav skrivs ibland ihop till ett krav:

En direkt följd av definitionen är att om är en linjär avbildning.

Exempel på linjära avbildningar är

Exempel på avbildningar som inte är linjära är

  • För reella tal: och . Ibland missuppfattas den senare avbildningen som "linjär", därför att dess funktionsgraf är en linje. Denna egenskap gör dock bara funktionen till en affin avbildning.

Avbildningsmatriser

[redigera | redigera wikitext]

Som nämnts ovan kan matriser representera avbildningar. Här är några exempel på avbildningar :

  • Skalning två gånger i alla riktningar:
  • Rotation med vinkeln moturs:

Tillämpningar

[redigera | redigera wikitext]

Linjära transformationer användas bland annat för att skapa linjära fraktaler som till exempel von Kochs kurva. För att genomföra detta så brukas ett itererat funktionssystem (IFS) som består av två eller flera linjära transformationer av samma eller olika typ.

Externa länkar

[redigera | redigera wikitext]