Arthur–Selbergs spårformel
Utseende
Inom matematiken är Arthur–Selbergs spårformel en generalisering av Selbergs spårformel från gruppen SL2 till en godtycklig reduktiv grupp över en global kropp, utvecklad av James Arthur i en lång serie publikationer från 1974 till 2003. Formeln beskriver karaktären av representationen av G(A) på den diskreta delen L20(G(F)∖G(A)) av L2(G(F)∖G(A)) i termer av geometriskt data, där G är en reduktiv algebraisk grupp definierad över en global kropp F och A är ringen av adeler av F.
Källor
[redigera | redigera wikitext]- Den här artikeln är helt eller delvis baserad på material från engelskspråkiga Wikipedia, Arthur–Selberg trace formula, 23 januari 2015.
- Arthur, James (1981), ”The trace formula in invariant form”, Annals of Mathematics. Second Series (Annals of Mathematics) 114 (1): 1–74, doi:
- Arthur, James (1983), ”The trace formula for reductive groups”, Conference on automorphic theory (Dijon, 1981), Publ. Math. Univ. Paris VII, "15", Paris: Univ. Paris VII, s. 1–41, http://www2.maths.ox.ac.uk/cmi/library/cw/arthur/pdf/tfreductive.pdf
- Arthur, James (2002), ”A stable trace formula. I. General expansions”, Journal of the Institute of Mathematics of Jussieu. JIMJ. Journal de l'Institute de Mathématiques de Jussieu 1 (2): 175–277, doi: , arkiverad från ursprungsadressen den 2008-05-09, https://web.archive.org/web/20080509063705/http://www.claymath.org/cw/arthur/pdf/54.pdf
- Arthur, James (2005), ”An introduction to the trace formula”, Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., "4", Providence, R.I.: American Mathematical Society, s. 1–263, arkiverad från ursprungsadressen den 2008-05-09, https://web.archive.org/web/20080509055029/http://www.claymath.org/cw/arthur/pdf/62.pdf
- Flicker, Yuval Z.; Kazhdan, David A. (1988), ”A simple trace formula”, Journal d'Analyse Mathématique 50: 189–200, doi:
- Gelbart, Stephen (1996), Lectures on the Arthur-Selberg trace formula, University Lecture Series, "9", Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-0571-8
- Jacquet, H.; Langlands, Robert P. (1970), Automorphic forms on GL(2), Lecture Notes in Mathematics, Vol. 114, "114", Berlin, New York: Springer-Verlag, doi: , ISBN 978-3-540-04903-6, http://www.sunsite.ubc.ca/DigitalMathArchive/Langlands/JL.html#book
- Konno, Takuya (2000), ”A survey on the Arthur-Selberg trace formula”, Surikaisekikenkyusho Kõkyuroku (1173): 243–288, http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1173-20.pdf
- Kottwitz, Robert E. (1988), ”Tamagawa numbers”, Ann. Of Math. (2) (Annals of Mathematics) 127 (3): 629–646, doi:
- Labesse, Jean-Pierre (1986), ”La formule des traces d'Arthur-Selberg”, Astérisque (133): 73–88
- Langlands, Robert P. (2001), ”The trace formula and its applications: an introduction to the work of James Arthur”, Canadian Mathematical Bulletin 44 (2): 160–209, doi: , ISSN 0008-4395
- Lafforgue, Laurent (2002), ”Chtoucas de Drinfeld, formule des traces d'Arthur-Selberg et correspondance de Langlands”, Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), Beijing: Higher Ed. Press, s. 383–400
- Langlands, Robert P. (1983), Les débuts d'une formule des traces stable, Publications Mathématiques de l'Université Paris VII [Mathematical Publications of the University of Paris VII], "13", Paris: Université de Paris VII U.E.R. de Mathématiques, http://www.sunsite.ubc.ca/DigitalMathArchive/Langlands/endoscopy.html#debuts
- Langlands, Robert P. (2001), ”The trace formula and its applications: an introduction to the work of James Arthur”, Canadian Mathematical Bulletin 44 (2): 160–209, doi: , arkiverad från ursprungsadressen den 2015-09-08, https://web.archive.org/web/20150908070437/http://cms.math.ca/openaccess/cmb/v44/langlands8065.pdf, läst 19 juni 2018
- Shokranian, Salahoddin (1992), The Selberg-Arthur trace formula, Lecture Notes in Mathematics, "1503", Berlin, New York: Springer-Verlag, doi: , ISBN 978-3-540-55021-1