Tom produkt
Den här artikeln behöver källhänvisningar för att kunna verifieras. (2020-08) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan. |
I matematik är den tomma produkten resultatet av en multiplikation med noll faktorer, och lika med 1. Uttryckt med potenser innebär den att a0 = 1 för alla a utom 0.
Motivering
[redigera | redigera wikitext]En situation där den tomma produkten förekommer är bråkräkning. I följande exempel kan både 2:an och 3:an förkortas, varefter täljaren innehåller noll faktorer och har värdet 1:
Mer formellt kan den tomma produktens värde motiveras utifrån definitionen att summan av noll termer är 0 och att logaritmen av en produkt är lika med summan av de ingående faktorernas logaritmer. Exempelvis gäller för två faktorer m och n att
Logaritmen av en produkt innehållande noll faktorer är lika med en summa av noll termer, det vill säga 0. Talet 1 har logaritmen 0, varför resultatet av den tomma multiplikationen är 1.
0 upphöjt till 0
[redigera | redigera wikitext]I allmänhet är det mest praktiskt att definiera a0 =1 för alla tal a som är skilda från noll.
Däremot gäller det inte alltid att f(x)g(x) har 1 som gränsvärde då f och g går mot 0 – exempelvis har funktionen f(x) = x0 gränsvärdet 1 medan f(x) = 0x har 0 som gränsvärde. I den här meningen är 00 ett obestämt uttryck och försiktighet krävs vid hantering av funktioner som ger upphov till det.
Se även
[redigera | redigera wikitext]